built with concourse

OVERVIEW

I burned my programable 8-bit microprocessor to an FPGA development board and you can control it at jeffdecola.com/control-an-fpga._

This project is separated into 5 main sections,

This may help,

IMAGE - 8-bit processor - IMAGE

SOFTWARE/HARDWARE STACK

SECTION I - THE FPGA

Summary,

FPGA (MY 8-BIT MICROPROCESSOR)

I designed a programable 8-bit microprocessor in verilog and burned to an FPGA. Refer to that repo on how I accomplished this.

VERILOG

This is the high level architecture of the 8-bit microprocessor I designed in verilog,

IMAGE - Top-Level-Block-Diagram-of-the-8-bit-Microprocessor.jpg - IMAGE

INPUT/OUTPUT

ARTY S7-50 FPGA DEVELOPMENT BOARD

I burned the microprocessor to an FPGA on an Arty S7-50 FPGA development board.

IMAGE - digilent-arty-s7-50.jpg - IMAGE

SERVER SIDE (CONNECTION TO RASPBERRY PI)

The FPGA is connected to the Raspberry Pi via the PMOD pins.

SECTION II - THE BREADBOARD

To connect the Raspberry Pi to the FPGA dev board, I used a breadboard. I connected the GPIO pins on the Raspberry Pi 4B to the PMOD pins on the FPGA development board.

There are a total of 31 pins used by the microprocessor, but there are only 28 GPIO pins. Hence, I tied 3 of the DATA_IN_A pins to gnd.

The pin list between the Raspberry Pi and the FPGA development board is as follows,

  PMOD Pins RasPi GPIO Pin
[7:0] DATA_IN_A JA PMOD  
[7] 1 18 (GPIO24)
(GND) [6] 2 N/C
(GND) [5] 3 N/C
(GND) [4] 4 N/C
[3] 7 16 (GPIO23)
[2] 8 12 (GPIO18)
[1] 9 10 (GPIO15)*
[0] 10 08 (GPIO14)*
     
[7:0] DATA_IN_B JB PMOD  
     
[7] 1 37 (GPIO26)
[6] 2 40 (GPIO21)
[5] 3 38 (GPIO20)
[4] 4 36 (GPIO16)
[3] 7 32 (GPIO12)
[2] 8 26 (GPIO7)
[1] 9 24 (GPIO8)
[0] 10 22 (GPIO25)
     
[7:0] DATA_OUT JC PMOD  
     
[7] 1 15 (GPIO22)
[6] 2 19 (GPIO10)
[5] 3 21 (GPIO9)
[4] 4 23 (GPIO11)
[3] 7 29 (GPIO5)
[2] 8 31 (GPIO6)
[1] 9 33 (GPIO13)
[0] 10 35 (GPIO19)
     
[3:0] OPCODE JD PMOD  
     
[3] 1 03 (GPIO2)**
[2] 2 05 (GPIO3)**
[1] 3 07 (GPIO4)
[0] 4 11 (GPIO17)
GO 7 13 (GPIO27)
RESET 8 27 (GPIO0)
JAM 9 28 (GPIO1)
N/C 10 N/C

NOTE1: To use pin 8 (GPIO14) and pin 10 (GPIO15) you must disable the serial port using raspi-config. Select Interfacing Options and then Serial and select No.

NOTE2 Pin 3 (GPIO2) and pin 5 (GPIO3) have fixed pull-up resistors to 3.3V.

IMAGE - arty-s7-50-pmod-to-raspi-gpio-breadboard-connections.jpg - IMAGE

The result,

IMAGE - breadboard.jpg - IMAGE

IMAGE - arty-s7-breadboard-and-raspberry-pi.jpg - IMAGE

SECTION III - THE RASPBERRY PI

The Raspberry Pi has two main functions,

CLIENT SIDE (CONNECTION TO FPGA)

The Raspberry Pi will control the I/O of the FPGA via the GPIO pins. The Raspberry Pi will be the client and the FPGA will be the server.

CONTROL FPGA I/O VIA GO

The Raspberry Pi will control the FPGA via GO using the periph.io go package.

Init Raspberry Pi,

  // INIT HOST MACHINE (i.e. Raspberry Pi)
  _, err := host.Init()
  if err != nil {
    log.Fatal(err)
  }

For inputs,

  // DATA_IN_A -----------------------------------
  DATA_IN_A7_PIN := gpioreg.ByName("24")
  if DATA_IN_A7_PIN == nil {
    log.Fatal("Failed to find DATA_IN_A7_PIN")
  }

For outputs also set the pulldown resistor,

  // DATA_OUT -----------------------------------
  DATA_OUT_7_PIN := gpioreg.ByName("22")
  if DATA_OUT_7_PIN == nil {
    log.Fatal("Failed to find DATA_OUT_7_PIN")
  }

  // SET PULLDOWN RESISTER AND LOOK FOR BOTH EDGES (High->Low or Low->High)
  err = DATA_OUT_7_PIN.In(gpio.PullDown, gpio.BothEdges)
  if err != nil {
    log.Fatal(err)
  }

SERVER SIDE (CONNECTION TO WEB SERVER)

The Raspberry Pi will also be a server using gRPC. It will accept requests from a web server client and return the results.

GO AND gRPC

tbd

DOCKER (GO INTEGRATION AND DEPLOYMENT)

A go program will interface with both the FPGA and web server. It will placed in a docker image and deployed to a Raspberry Pi 4B.

RUN

To run.sh,

cd section-2-backend-server
go run main.go

Currently, it will ask you if you want to add, subtract, multiply or divide. It will look like,

1: add, 2: subtract, 3: multiply, 4: divide, x: exit: 1
    ADD
    DATA_IN_A: 10000011
    DATA_IN_B: 00001100
    DATA_OUT:  10001111 

CREATE BINARY

To create-binary.sh,

cd section-2-backend-server/bin
go build -o control-fpga-via-raspi-and-webserver ../main.go
./control-fpga-via-raspi-and-webserver

This binary will not be used during a docker build since it creates it’s own.

STEP 1 - TEST

To create unit _test files,

cd section-2-backend-server
gotests -w -all main.go

To run unit-tests.sh,

go test -cover ./... | tee test/test_coverage.txt
cat test/test_coverage.txt

STEP 2 - BUILD (DOCKER IMAGE VIA DOCKERFILE)

To build.sh with a Dockerfile,

The Dockerfile has the architecture as arm64,

FROM --platform=linux/arm64 golang:alpine AS builder

You may have to get some libraries,

sudo apt-get install -y qemu qemu-user-static
docker buildx ls
cd section-2-backend-server
docker build --output type=docker\
             --platform=linux/arm64\
             --no-cache\
             -f build/Dockerfile\
             -t jeffdecola/control-fpga-via-raspi-and-webserver .

If you are on an ARM64, you can check and test this docker image,

docker images jeffdecola/control-fpga-via-raspi-and-webserver:latest
docker run --privileged\
           --name control-fpga-via-raspi-and-webserver\
           -dit jeffdecola/control-fpga-via-raspi-and-webserver

Write stdin,

echo '1' | socat EXEC:"docker attach control-fpga-via-raspi-and-webserver",pty STDIN

Check stdout,

docker logs control-fpga-via-raspi-and-webserver

Other commands,

docker exec -i -t control-fpga-via-raspi-and-webserver /bin/bash
docker rm -f control-fpga-via-raspi-and-webserver

In stage 1, rather than copy a binary into a docker image (because that can cause issues), the Dockerfile will build the binary in the docker image,

FROM golang:alpine AS builder
RUN go get -d -v
RUN go build -o /go/bin/control-fpga-via-raspi-and-webserver main.go

In stage 2, the Dockerfile will copy the binary created in stage 1 and place into a smaller docker base image based on alpine, which is around 13MB.

STEP 3 - PUSH (TO DOCKERHUB)

You must be logged in to DockerHub,

docker login

To push.sh,

docker push jeffdecola/control-fpga-via-raspi-and-webserver

Check the control-fpga-via-raspi-and-webserver docker image at DockerHub.

STEP 4 - DEPLOY (TO DOCKER ON RASPBERRY PI)

To deploy.sh,

cd section-2-backend-server
docker run --privileged\
           --pull=always\
           --name control-fpga-via-raspi-and-webserver\
            -dit jeffdecola/control-fpga-via-raspi-and-webserver

Using –privileged allows complete access to raspberry pi.

If doing it over the network, you can do something like,

ssh -o StrictHostKeyChecking=no\
    -p 22 jeff@192.168.20.118\
    'export PATH=$PATH:/usr/local/bin; docker run --privileged --pull=always --name control-fpga-via-raspi-and-webserver -dit jeffdecola/control-fpga-via-raspi-and-webserver'

INTERACT WITH DOCKER CONTAINER

The docker container is running on your raspberry pi. As mentioned above, the user may interact with the stdin and stdout of the docker container by,

Write stdin,

echo '1' | socat EXEC:"docker attach control-fpga-via-raspi-and-webserver",pty STDIN

Check stdout,

docker logs control-fpga-via-raspi-and-webserver

CONTINUOUS INTEGRATION & DEPLOYMENT

Refer to ci-README.md on how I automated the above steps.

SECTION IV - THE WEB SERVER

The web server has two main functions,

CLIENT SIDE (CONNECTION TO RASPBERRY PI)

tbd

SERVER SIDE (CONNECTION TO BROWSER)

php is used to handle the ajax XHR POST call request from the browser.

This is a high level overview of the process,

        // GET THE JSON DATA FROM THE USER
        header("Content-Type: application/json");
        $attributesJSON = json_decode(file_get_contents("php://input"));

        // UN PARSE IT
        $opcode = $attributesJSON->opcode;
        $data_in_a = $attributesJSON->data_in_a;
        $data_in_b = $attributesJSON->data_in_b;
        $go = $attributesJSON->go;

        // DO SOMETHING - THIS IS WHERE YOU WOULD SEND DATA TO THE FPGA
        ...

        // BUILD ARRAY
        $array = [
          'data_out'=>$data_out,
        ];

        // SEND RESPONSE TO THE BROWSER
        echo json_encode($array);

SECTION V - THE BROWSER

I have a working demo at jeffdecola.com/control-an-fpga.

CLIENT SIDE (CONNECTION TO WEB SERVER)

To connect with the webserver, I’m using javascript client side programming. It will send a ajax XHR POST call to the web server.

AJAX XHR POST CALL

On the browser side using javascript, an ajax XHR POST call is made to the web server,

        // PHP FILE LOCATION
        var url = 'path to file/filename.php';

        // CREATE A NEW REQUEST
        postRequest = new XMLHttpRequest();
        
        // CONVERT JSON TO STRING
        var attributesJSONString = JSON.stringify({
            "opcode": opcode,
            "data_in_a": data_in_a,
            "data_in_b": data_in_b,
            "go": go
        });

        // OPEN CONNECTION - CREATE POST REQUEST
        postRequest.open  'POST' , url, true);

        // SEND JSON FORMAT
        postRequest.setRequestHeader('Content-Type', 'application/json');
        postRequest.send(attributesJSONString);

        // LISTEN AND KICK OFF FUNCTION WHEN READY
        postRequest.onreadystatechange = function() {
            ...see code...
        }

WEBSITE

The end result jeffdecola.com/control-an-fpga looks as follows,

IMAGE - screenshot-of-website.jpg - IMAGE